A caged, localizable rhodamine derivative for superresolution microscopy.
نویسندگان
چکیده
A caged rhodamine 110 derivative for the specific labeling of SNAP-tag fusion proteins is introduced. The caged rhodamine 110 derivative permits the labeling of cell surface proteins in living cells and of intracellular proteins in fixed cells. The probe requires only a single caging group to maintain the fluorophore in a non-fluorescent state and becomes highly fluorescent after uncaging. The high contrast ratio is confirmed both in bulk and at the single molecule level. This property, together with its high photon yield makes it an excellent dye for photoactivated localization microscopy (PALM), as we demonstrate here.
منابع مشابه
Facile and General Synthesis of Photoactivatable Xanthene Dyes**
Photoactivatable “caged” fluorophores enable numerous advanced biological imaging experiments, including photoactivated localization microscopy (PALM) and related super-resolution imaging techniques. Of the extant fluorophore scaffolds, caged rhodamines and fluoresceins display properties that are exceptionally well suited for superresolution microscopy, exhibiting high contrast and photon yiel...
متن کاملRhodamines NN: a novel class of caged fluorescent dyes.
Caged (that is, masked) fluorescent dyes are maintained in their nonfluorescent state by the incorporation of a photochemical labile group. The photosensitive masking group or “molecular cage” can be cleaved-off by irradiation with nearUV light, thereby rendering the dye fluorescent. Caged fluorescent dyes are of enormous interest for biological imaging because they may be used, for example, fo...
متن کاملSpecific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02088g Click here for additional data file.
We present new fluorophore-conjugates for dual-color photoactivation and super-resolution imaging inside live mammalian cells. These custom-designed, photo-caged Q-rhodamines and fluoresceins are cell-permeable, bright and localize specifically to intracellular targets. We utilized established orthogonal protein labeling strategies to precisely attach the photoactivatable fluorophores to protei...
متن کاملSynthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, provid...
متن کاملSpecific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells.
We present new fluorophore-conjugates for dual-color photoactivation and super-resolution imaging inside live mammalian cells. These custom-designed, photo-caged Q-rhodamines and fluoresceins are cell-permeable, bright and localize specifically to intracellular targets. We utilized established orthogonal protein labeling strategies to precisely attach the photoactivatable fluorophores to protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS chemical biology
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2012